Statistical Analysis
Perform comprehensive statistical analysis on datasets including descriptive statistics, hypothesis testing, correlation analysis, and predictive modeling.
Statistical Analysis
Perform comprehensive statistical analysis on datasets within the sandbox environment including descriptive statistics, hypothesis testing, correlation analysis, regression modeling, and advanced statistical computations.
📊 Advanced Statistical Computing
Statistical analysis provides powerful analytical capabilities including parametric and non-parametric tests, multivariate analysis, time series analysis, and machine learning algorithms for data insights.
Overview
The Statistical Analysis tool enables comprehensive statistical computing and data analysis within the sandbox environment, supporting descriptive statistics, inferential statistics, predictive modeling, and advanced analytical techniques for data-driven insights.
Key Features
- Descriptive Statistics - Comprehensive summary statistics and data distribution analysis
- Hypothesis Testing - Parametric and non-parametric statistical tests
- Correlation Analysis - Correlation matrices and relationship analysis
- Regression Modeling - Linear and non-linear regression analysis
- Predictive Analytics - Machine learning and forecasting capabilities
Methods
statisticalAnalysis
Perform statistical analysis on datasets.
| Parameter | Type | Required | Description |
|---|---|---|---|
| dataPath | String | Yes | Path to dataset file (CSV, XLSX, JSON) |
| analysisType | String | No | Analysis type: 'descriptive', 'inferential', 'predictive', 'comprehensive' (default: 'comprehensive') |
| targetVariable | String | No | Target variable for analysis (column name) |
| independentVariables | Array | No | List of independent variables for analysis |
| statisticalTests | Array | No | Specific statistical tests to perform |
| confidenceLevel | Number | No | Confidence level for statistical tests (default: 0.95) |
| outputFormat | String | No | Output format: 'summary', 'detailed', 'report' (default: 'detailed') |
{
"dataPath": "/sandbox/data/survey_results.csv",
"analysisType": "comprehensive",
"targetVariable": "satisfaction_score",
"independentVariables": ["age", "income", "education_level"],
"statisticalTests": ["t_test", "correlation", "regression"],
"confidenceLevel": 0.95
}Output:
success(Boolean) - Analysis operation success statusdataPath(String) - Path to analyzed datasetdescriptiveStats(Object) - Descriptive statistics summaryinferentialStats(Object) - Hypothesis testing resultscorrelationAnalysis(Object) - Correlation analysis resultsregressionAnalysis(Object) - Regression modeling resultspredictiveModels(Object) - Predictive model resultsvisualizations(Object) - Generated charts and plotsanalysisTime(Number) - Analysis duration in milliseconds
Descriptive Statistics
Summary Statistics and Data Distribution
Hypothesis Testing
Statistical Tests and Inference
Regression Analysis
Linear and Non-Linear Modeling
Error Handling
Common Statistical Analysis Issues
| Error Type | Cause | Resolution |
|---|---|---|
| Data Format Error | Incompatible data format | Verify CSV/XLSX format and structure |
| Missing Variable | Specified variable not found | Check column names and data structure |
| Insufficient Data | Too few observations for analysis | Increase sample size or use simpler tests |
| Assumption Violations | Statistical assumptions not met | Use non-parametric alternatives |
| Convergence Error | Model fails to converge | Adjust parameters or preprocessing |
Robust Statistical Analysis
def robust_statistical_analysis(data_path, target_variable, predictor_variables, fallback_methods=None):
"""Perform statistical analysis with comprehensive error handling and fallbacks."""
if not fallback_methods:
fallback_methods = [
{"analysisType": "comprehensive", "statisticalTests": ["correlation", "regression", "t_test"]},
{"analysisType": "descriptive", "statisticalTests": ["correlation"]},
{"analysisType": "descriptive", "statisticalTests": ["basic_stats"]}
]
for i, method in enumerate(fallback_methods):
try:
print(f"🔄 Attempting analysis method {i+1}")
analysis_params = {
"dataPath": data_path,
"targetVariable": target_variable,
"independentVariables": predictor_variables,
**method
}
result = statisticalAnalysis(analysis_params)
if result['success']:
print(f"✅ Analysis successful with method {i+1}")
return {
"success": True,
"method_used": i+1,
"method_details": method,
"results": result
}
else:
print(f"⚠️ Method {i+1} failed: {result.get('error')}")
except Exception as e:
print(f"💥 Method {i+1} exception: {str(e)}")
return {
"success": False,
"error": "All analysis methods failed",
"methods_attempted": len(fallback_methods)
}
# Usage with error handling
robust_result = robust_statistical_analysis("/sandbox/problematic/incomplete_data.csv",
"outcome", ["predictor1", "predictor2"])Related Tools
XLSX Analysis
Analyze Excel spreadsheets and extract data for statistical analysis
Data Transformation
Transform and preprocess data for statistical analysis
Read File
Read datasets for statistical analysis from various formats
Next Steps: Combine with Data Transformation for data preprocessing, or use XLSX Analysis for Excel-specific analysis.