logo_smallAxellero.io

Web Tools

Web search, scraping, and image search capabilities for collecting data from the internet within secure sandbox environments.

Web Tools

Comprehensive web data collection capabilities including search engines, web scraping, and image search, all operating within secure sandbox environments with rate limiting and content validation.

🌐 Secure Web Data Collection

Web tools provide safe internet data collection with built-in rate limiting, content filtering, and secure data handling to protect both users and target websites.

Quick Navigation

Available Tools

ToolCodePurposeKey Features
Web SearchwebSearchSearch engines and collect resultsMulti-engine support, result ranking, content filtering
Web ScrapingwebScrapingExtract data from websitesStructured extraction, rate limiting, robots.txt compliance
Image SearchimageSearchFind and collect imagesMetadata extraction, format validation, copyright detection

Security and Compliance

Web Access Security Model

Compliance Features

🤝 Ethical Web Data Collection

  • Robots.txt Compliance - Automatic respect for website crawling policies
  • Rate Limiting - Configurable delays to prevent server overload
  • User-Agent Identification - Transparent identification in web requests
  • Copyright Awareness - Detection and flagging of copyrighted content
  • Privacy Protection - Automatic filtering of personal information
  • Terms of Service Respect - Compliance with website terms and conditions

Search Capabilities

Image Search and Collection

Web Scraping Capabilities

Structured Data Extraction

Rate Limiting and Ethics

Responsible Web Access

⚡ Ethical Web Scraping Guidelines

Rate Limiting:

  • Request Delays - Configurable delays between requests (default: 1-5 seconds)
  • Concurrent Limits - Maximum simultaneous connections per domain
  • Bandwidth Throttling - Limit download speed to avoid overwhelming servers
  • Time-based Quotas - Daily/hourly request limits per domain
  • Exponential Backoff - Increase delays when encountering errors

Compliance Checks:

  • Robots.txt Parsing - Automatic compliance with crawling policies
  • Terms of Service - Alert users to potential ToS violations
  • Copyright Detection - Identify and flag copyrighted content
  • Personal Data Protection - Automatic filtering of PII and sensitive data

Configuration Examples

// Ethical scraping configuration
const ethicalConfig = {
    rateLimiting: {
        requestDelay: 3000,        // 3 seconds between requests
        maxConcurrent: 2,          // Max 2 simultaneous requests per domain
        respectRetryAfter: true,   // Honor server retry-after headers
        exponentialBackoff: true,  // Increase delays on errors
        dailyQuota: 1000          // Max 1000 requests per day per domain
    },
    compliance: {
        checkRobotsTxt: true,      // Always check robots.txt
        respectNoIndex: true,      // Skip pages with noindex directive
        userAgent: "Axellero Web Scraper 1.0",
        contactInfo: "admin@example.com"
    },
    contentFiltering: {
        blockPersonalData: true,   // Filter out PII
        copyrightDetection: true,  // Check for copyrighted content
        adultContentFilter: true,  // Skip adult content
        malwareCheck: true        // Scan for malicious content
    }
};

// Apply configuration to scraping
const result = await webScraping({
    url: "https://example.com",
    config: ethicalConfig,
    extractors: dataExtractors
});

Performance and Optimization

Caching and Efficiency

Optimization Strategies

🚀 Performance Best Practices

Caching Strategies:

  • Response Caching - Cache successful responses with TTL
  • Incremental Updates - Only fetch changed content
  • Conditional Requests - Use ETags and Last-Modified headers
  • Content Deduplication - Avoid refetching identical content

Request Optimization:

  • Batch Processing - Group related requests efficiently
  • Connection Reuse - Maintain persistent connections
  • Compression - Enable gzip/deflate for text content
  • Selective Extraction - Only extract needed data fields

Error Handling:

  • Retry Logic - Intelligent retry with backoff strategies
  • Fallback Options - Alternative sources for failed requests
  • Graceful Degradation - Continue processing despite partial failures

Data Processing Workflows

Research and Analysis Pipeline

# Complete web research workflow
async def comprehensive_web_research(research_topic):
    """Conduct comprehensive research using web tools."""
    
    # 1. Multi-engine web search
    print(f"🔍 Researching: {research_topic}")
    
    search_results = await webSearch({
        'query': research_topic,
        'engines': ['google', 'bing', 'academic'],
        'maxResults': 100,
        'filters': {
            'dateRange': 'past_2_years',
            'contentType': ['article', 'research', 'blog'],
            'language': 'en'
        }
    })
    
    # 2. Filter and rank results
    relevant_sources = []
    for result in search_results.get('results', []):
        if result['relevanceScore'] > 0.7:
            relevant_sources.append(result)
    
    print(f"📊 Found {len(relevant_sources)} relevant sources")
    
    # 3. Extract content from top sources
    extracted_content = []
    
    for source in relevant_sources[:20]:  # Process top 20 sources
        try:
            content = await webScraping({
                'url': source['url'],
                'extractors': [
                    {
                        'name': 'main_content',
                        'selector': 'article, .content, .post, main',
                        'fields': {
                            'title': 'h1, h2',
                            'content': 'p, div.text',
                            'author': '.author, .byline',
                            'date': '.date, .published'
                        }
                    }
                ],
                'config': {
                    'rateLimiting': {'requestDelay': 2000},
                    'compliance': {'checkRobotsTxt': True}
                }
            })
            
            if content['success']:
                extracted_content.append({
                    'source': source,
                    'content': content['data']
                })
                
        except Exception as e:
            print(f"⚠️ Failed to extract from {source['url']}: {e}")
    
    # 4. Collect supporting images
    image_results = await imageSearch({
        'query': f"{research_topic} infographic diagram",
        'filters': {
            'license': ['creative_commons', 'public_domain'],
            'format': ['png', 'svg', 'jpg']
        },
        'maxResults': 10
    })
    
    # 5. Organize and structure findings
    research_data = {
        'topic': research_topic,
        'search_summary': {
            'total_results': len(search_results.get('results', [])),
            'relevant_sources': len(relevant_sources),
            'extracted_articles': len(extracted_content)
        },
        'sources': extracted_content,
        'supporting_images': image_results.get('images', []),
        'research_date': datetime.now().isoformat()
    }
    
    # 6. Save research data
    await writeFile({
        'path': f'/sandbox/research/{research_topic}_research.json',
        'content': json.dumps(research_data, indent=2)
    })
    
    print(f"✅ Research completed. Data saved to sandbox.")
    return research_data

# Execute research workflow
research_results = await comprehensive_web_research("sustainable energy technologies")

Competitive Analysis Workflow

// Competitive analysis using web tools
class CompetitiveAnalyzer {
    constructor() {
        this.competitors = [];
        this.analysisData = {};
    }
    
    async analyzeCompetitors(industry, targetCompanies) {
        console.log(`🏢 Analyzing ${targetCompanies.length} competitors in ${industry}`);
        
        for (const company of targetCompanies) {
            const analysis = await this.analyzeCompany(company);
            this.analysisData[company] = analysis;
        }
        
        return this.generateCompetitiveReport();
    }
    
    async analyzeCompany(companyName) {
        // 1. Search for company information
        const companySearch = await webSearch({
            query: `${companyName} company profile products services`,
            engines: ['google', 'bing'],
            maxResults: 50,
            filters: {
                domain: [
                    'bloomberg.com', 'reuters.com', 'crunchbase.com',
                    'linkedin.com', 'glassdoor.com'
                ]
            }
        });
        
        // 2. Scrape company website
        const websiteData = await this.scrapeCompanyWebsite(companyName);
        
        // 3. Collect product images and marketing materials
        const marketingImages = await imageSearch({
            query: `${companyName} products marketing materials`,
            filters: {
                license: ['any'], // For analysis purposes
                format: ['jpg', 'png']
            },
            maxResults: 15
        });
        
        // 4. Analyze news and press coverage
        const newsAnalysis = await this.analyzeNews(companyName);
        
        return {
            company: companyName,
            searchResults: companySearch,
            websiteData: websiteData,
            marketingMaterials: marketingImages,
            newsAnalysis: newsAnalysis,
            analysisDate: new Date().toISOString()
        };
    }
    
    async scrapeCompanyWebsite(companyName) {
        // Try to find the company's main website
        const websiteSearch = await webSearch({
            query: `${companyName} official website`,
            maxResults: 5
        });
        
        if (!websiteSearch.results || websiteSearch.results.length === 0) {
            return null;
        }
        
        const mainWebsite = websiteSearch.results[0].url;
        
        try {
            const websiteContent = await webScraping({
                url: mainWebsite,
                extractors: [
                    {
                        name: 'navigation',
                        selector: 'nav, .navigation, .menu',
                        fields: {
                            links: 'a',
                            sections: 'li, .nav-item'
                        }
                    },
                    {
                        name: 'products',
                        selector: '.product, .service, .solution',
                        fields: {
                            title: 'h1, h2, h3',
                            description: 'p, .description',
                            features: 'ul li, .features li'
                        }
                    },
                    {
                        name: 'about',
                        selector: '.about, #about, .company-info',
                        fields: {
                            description: 'p',
                            mission: '.mission, .vision',
                            history: '.history, .timeline'
                        }
                    }
                ],
                config: {
                    rateLimiting: { requestDelay: 3000 },
                    compliance: { checkRobotsTxt: true }
                }
            });
            
            return websiteContent.data;
            
        } catch (error) {
            console.warn(`⚠️ Could not scrape ${mainWebsite}: ${error.message}`);
            return null;
        }
    }
    
    async analyzeNews(companyName) {
        const newsSearch = await webSearch({
            query: `"${companyName}" news press release funding`,
            engines: ['google', 'bing'],
            filters: {
                dateRange: 'past_year',
                contentType: ['news', 'article'],
                domain: [
                    'techcrunch.com', 'venturebeat.com', 'businesswire.com',
                    'prnewswire.com', 'reuters.com', 'bloomberg.com'
                ]
            },
            maxResults: 30
        });
        
        // Categorize news by sentiment and topic
        const newsCategories = {
            funding: [],
            product_launches: [],
            partnerships: [],
            leadership: [],
            other: []
        };
        
        for (const article of newsSearch.results || []) {
            const title = article.title.toLowerCase();
            
            if (title.includes('funding') || title.includes('investment') || title.includes('raised')) {
                newsCategories.funding.push(article);
            } else if (title.includes('launch') || title.includes('release') || title.includes('product')) {
                newsCategories.product_launches.push(article);
            } else if (title.includes('partnership') || title.includes('collaboration')) {
                newsCategories.partnerships.push(article);
            } else if (title.includes('ceo') || title.includes('leadership') || title.includes('executive')) {
                newsCategories.leadership.push(article);
            } else {
                newsCategories.other.push(article);
            }
        }
        
        return newsCategories;
    }
    
    generateCompetitiveReport() {
        const report = {
            summary: {
                companiesAnalyzed: Object.keys(this.analysisData).length,
                analysisDate: new Date().toISOString(),
                methodology: "Web search, scraping, and image analysis"
            },
            competitors: this.analysisData,
            insights: this.generateInsights()
        };
        
        return report;
    }
    
    generateInsights() {
        // Analyze patterns across competitors
        const insights = {
            commonProducts: this.findCommonProducts(),
            marketingTrends: this.analyzeMarketingTrends(),
            newsPatterns: this.analyzeNewsPatterns()
        };
        
        return insights;
    }
    
    findCommonProducts() {
        // Implementation for finding common product categories
        return {};
    }
    
    analyzeMarketingTrends() {
        // Implementation for analyzing marketing materials
        return {};
    }
    
    analyzeNewsPatterns() {
        // Implementation for analyzing news patterns
        return {};
    }
}

// Usage
const analyzer = new CompetitiveAnalyzer();
const competitorList = ['Company A', 'Company B', 'Company C'];
const analysis = await analyzer.analyzeCompetitors('SaaS', competitorList);

Integration Patterns

With File System Tools

# Web data collection and file management workflow
async def web_to_file_workflow(research_topics):
    """Collect web data and organize in file system."""
    
    for topic in research_topics:
        print(f"📁 Processing topic: {topic}")
        
        # Create directory for topic
        topic_dir = f"/sandbox/research/{topic.replace(' ', '_')}"
        await createDirectory({
            'path': topic_dir,
            'recursive': True
        })
        
        # 1. Web search and save results
        search_results = await webSearch({
            'query': topic,
            'maxResults': 50
        })
        
        await writeFile({
            'path': f"{topic_dir}/search_results.json",
            'content': json.dumps(search_results, indent=2)
        })
        
        # 2. Collect images and save metadata
        images = await imageSearch({
            'query': topic,
            'maxResults': 10
        })
        
        await writeFile({
            'path': f"{topic_dir}/images_metadata.json",
            'content': json.dumps(images, indent=2)
        })
        
        # 3. Scrape top articles and save content
        for i, result in enumerate(search_results['results'][:5]):
            try:
                content = await webScraping({
                    'url': result['url']
                })
                
                if content['success']:
                    filename = f"article_{i+1}_{result['title'][:50]}.json"
                    filename = "".join(c for c in filename if c.isalnum() or c in ('_', '-', '.'))
                    
                    await writeFile({
                        'path': f"{topic_dir}/{filename}",
                        'content': json.dumps(content, indent=2)
                    })
                    
            except Exception as e:
                print(f"⚠️ Failed to scrape {result['url']}: {e}")
    
    # Create summary report
    all_files = await listFiles({
        'path': '/sandbox/research/',
        'recursive': True
    })
    
    summary = {
        'topics_researched': len(research_topics),
        'total_files_created': len(all_files),
        'research_date': datetime.now().isoformat()
    }
    
    await writeFile({
        'path': '/sandbox/research/summary_report.json',
        'content': json.dumps(summary, indent=2)
    })
    
    return summary

# Execute workflow
topics = ["artificial intelligence", "blockchain technology", "renewable energy"]
summary = await web_to_file_workflow(topics)

Error Handling and Monitoring

Robust Web Operations

// Comprehensive error handling for web operations
class WebOperationManager {
    constructor() {
        this.retryAttempts = 3;
        this.retryDelay = 1000;
        this.operationLog = [];
    }
    
    async safeWebSearch(params) {
        return this.executeWithRetry('webSearch', webSearch, params);
    }
    
    async safeWebScraping(params) {
        return this.executeWithRetry('webScraping', webScraping, params);
    }
    
    async safeImageSearch(params) {
        return this.executeWithRetry('imageSearch', imageSearch, params);
    }
    
    async executeWithRetry(operationType, operation, params) {
        let lastError = null;
        
        for (let attempt = 1; attempt <= this.retryAttempts; attempt++) {
            try {
                const result = await operation(params);
                
                this.logOperation(operationType, 'success', {
                    attempt,
                    params: this.sanitizeParams(params),
                    result: this.summarizeResult(result)
                });
                
                return result;
                
            } catch (error) {
                lastError = error;
                
                this.logOperation(operationType, 'error', {
                    attempt,
                    error: error.message,
                    params: this.sanitizeParams(params)
                });
                
                if (attempt < this.retryAttempts) {
                    const delay = this.calculateDelay(attempt);
                    console.log(`⏳ Retrying ${operationType} in ${delay}ms (attempt ${attempt + 1}/${this.retryAttempts})`);
                    await new Promise(resolve => setTimeout(resolve, delay));
                } else {
                    console.error(`❌ ${operationType} failed after ${this.retryAttempts} attempts`);
                }
            }
        }
        
        throw new Error(`Operation ${operationType} failed: ${lastError.message}`);
    }
    
    calculateDelay(attempt) {
        // Exponential backoff with jitter
        const baseDelay = this.retryDelay * Math.pow(2, attempt - 1);
        const jitter = Math.random() * 1000;
        return baseDelay + jitter;
    }
    
    logOperation(type, status, details) {
        const logEntry = {
            timestamp: new Date().toISOString(),
            operation: type,
            status,
            ...details
        };
        
        this.operationLog.push(logEntry);
        
        // Keep only last 100 operations
        if (this.operationLog.length > 100) {
            this.operationLog.shift();
        }
    }
    
    sanitizeParams(params) {
        // Remove sensitive information from logs
        const sanitized = { ...params };
        delete sanitized.apiKeys;
        delete sanitized.credentials;
        return sanitized;
    }
    
    summarizeResult(result) {
        // Create summary without full data
        if (result.results) {
            return { resultCount: result.results.length };
        }
        if (result.images) {
            return { imageCount: result.images.length };
        }
        if (result.data) {
            return { dataExtracted: true };
        }
        return { status: 'completed' };
    }
    
    getOperationStats() {
        const stats = {
            totalOperations: this.operationLog.length,
            successRate: 0,
            errorsByType: {},
            averageAttempts: 0
        };
        
        let successCount = 0;
        let totalAttempts = 0;
        
        for (const log of this.operationLog) {
            if (log.status === 'success') {
                successCount++;
            } else {
                stats.errorsByType[log.operation] = (stats.errorsByType[log.operation] || 0) + 1;
            }
            totalAttempts += log.attempt || 1;
        }
        
        stats.successRate = (successCount / this.operationLog.length) * 100;
        stats.averageAttempts = totalAttempts / this.operationLog.length;
        
        return stats;
    }
}

// Usage with error handling
const webManager = new WebOperationManager();

try {
    // Safe web operations with automatic retry
    const searchResults = await webManager.safeWebSearch({
        query: "machine learning",
        maxResults: 20
    });
    
    const scrapingResults = await webManager.safeWebScraping({
        url: "https://example.com/data"
    });
    
    // Monitor operation statistics
    const stats = webManager.getOperationStats();
    console.log(`📊 Success Rate: ${stats.successRate.toFixed(2)}%`);
    
} catch (error) {
    console.error('🚨 Critical error in web operations:', error.message);
}

Next Steps: Start with Web Search for collecting search results, or explore Web Scraping for structured data extraction from websites.