Data Analysis Tools
Excel processing, statistical analysis, and data transformation capabilities for comprehensive data analysis workflows within secure sandbox environments.
Data Analysis Tools
Comprehensive data analysis capabilities including Excel processing, statistical analysis, and data transformation tools operating within secure sandbox environments with advanced computation and visualization features.
📊 Advanced Data Analysis Suite
Data analysis tools provide sophisticated Excel processing, statistical computation, and data transformation capabilities with support for large datasets and complex analytical workflows.
Quick Navigation
XLSX Analysis
Advanced Excel file processing with sheet analysis, formula evaluation, and data extraction
Statistical Analysis
Comprehensive statistical computations, hypothesis testing, and data modeling
Data Transformation
Data cleaning, normalization, aggregation, and format conversion tools
Available Tools
| Tool | Code | Purpose | Key Features |
|---|---|---|---|
| XLSX Analysis | xlsxAnalysis | Excel file processing and analysis | Multi-sheet support, formula evaluation, pivot tables, charting |
| Statistical Analysis | statisticalAnalysis | Statistical computations and modeling | Descriptive stats, hypothesis testing, regression, time series |
| Data Transformation | dataTransformation | Data cleaning and transformation | ETL operations, normalization, aggregation, format conversion |
Data Analysis Architecture
Processing Pipeline
Analysis Capabilities
🔬 Comprehensive Analysis Features
- Excel Processing - Complete Excel file analysis with formula evaluation and chart extraction
- Statistical Computing - Advanced statistical methods including regression, hypothesis testing, and time series analysis
- Data Transformation - ETL operations with data cleaning, normalization, and format conversion
- Large Dataset Support - Efficient processing of datasets up to 1GB with streaming and chunked operations
- Interactive Analysis - Real-time data exploration with dynamic filtering and aggregation
- Visualization - Automated chart generation and statistical plot creation
Excel Analysis Capabilities
Multi-Sheet Processing
Data Validation and Quality Assessment
Statistical Analysis Capabilities
Descriptive Statistics
Regression Analysis
Data Transformation Capabilities
ETL Operations
Performance and Scalability
Large Dataset Processing
📈 Performance Optimization
Memory Management:
- Chunked Processing - Process large datasets in memory-efficient chunks
- Streaming Operations - Stream data for minimal memory footprint
- Lazy Evaluation - Defer computations until results are needed
- Memory Monitoring - Track memory usage and optimize automatically
- Garbage Collection - Efficient cleanup of intermediate results
Parallel Processing:
- Multi-threading - Parallel execution of independent operations
- Vectorized Operations - Use SIMD instructions for numerical computations
- Distributed Computing - Split large tasks across multiple processes
- GPU Acceleration - Leverage GPU for compatible operations
- Caching - Intelligent caching of intermediate results
Performance Monitoring
# Performance-optimized data analysis workflow
class PerformantDataAnalyzer:
def __init__(self):
self.chunk_size = 10000
self.memory_threshold = 2 * 1024 * 1024 * 1024 # 2GB
self.performance_metrics = {}
async def analyze_large_dataset(self, file_path, analysis_config):
"""Analyze large datasets with performance optimization."""
import time
import psutil
start_time = time.time()
initial_memory = psutil.Process().memory_info().rss
try:
# Check file size to determine processing strategy
file_size = await self.get_file_size(file_path)
if file_size > self.memory_threshold:
return await self.chunked_analysis(file_path, analysis_config)
else:
return await self.standard_analysis(file_path, analysis_config)
finally:
# Record performance metrics
end_time = time.time()
final_memory = psutil.Process().memory_info().rss
self.performance_metrics = {
'execution_time': end_time - start_time,
'memory_usage': final_memory - initial_memory,
'file_size': file_size,
'processing_method': 'chunked' if file_size > self.memory_threshold else 'standard'
}
async def chunked_analysis(self, file_path, config):
"""Process large files in chunks."""
results = []
chunk_count = 0
async for chunk in self.read_file_chunks(file_path):
chunk_result = await self.analyze_chunk(chunk, config)
results.append(chunk_result)
chunk_count += 1
print(f"📊 Processed chunk {chunk_count} ({len(chunk)} rows)")
# Monitor memory usage
memory_usage = psutil.Process().memory_info().rss
if memory_usage > self.memory_threshold * 0.8:
print("⚠️ High memory usage detected, optimizing...")
await self.optimize_memory()
# Combine chunk results
return await self.combine_chunk_results(results, config)
async def standard_analysis(self, file_path, config):
"""Standard analysis for smaller files."""
if file_path.endswith('.xlsx'):
return await xlsxAnalysis({
'filePath': file_path,
**config
})
else:
return await statisticalAnalysis({
'data': file_path,
**config
})
async def read_file_chunks(self, file_path):
"""Generator for reading file in chunks."""
import pandas as pd
if file_path.endswith('.csv'):
for chunk in pd.read_csv(file_path, chunksize=self.chunk_size):
yield chunk
elif file_path.endswith('.xlsx'):
# For Excel files, read sheet by sheet
xl_file = pd.ExcelFile(file_path)
for sheet_name in xl_file.sheet_names:
chunk = pd.read_excel(file_path, sheet_name=sheet_name)
yield chunk
async def analyze_chunk(self, chunk, config):
"""Analyze individual chunk."""
# Convert chunk to temporary file for processing
temp_path = f'/sandbox/temp/chunk_{id(chunk)}.csv'
chunk.to_csv(temp_path, index=False)
try:
result = await statisticalAnalysis({
'data': temp_path,
**config
})
return result
finally:
# Clean up temporary file
import os
if os.path.exists(temp_path):
os.remove(temp_path)
async def combine_chunk_results(self, chunk_results, config):
"""Combine results from chunk processing."""
if config.get('analysis') == 'descriptive_statistics':
return self.combine_statistical_results(chunk_results)
elif config.get('operation') == 'aggregation':
return self.combine_aggregation_results(chunk_results)
else:
return {'chunk_results': chunk_results}
def combine_statistical_results(self, results):
"""Combine statistical analysis results."""
combined = {
'total_records': sum(r.get('record_count', 0) for r in results),
'summary_statistics': {},
'chunks_processed': len(results)
}
# Combine statistics (weighted by chunk size)
for column in results[0].get('columns', []):
combined['summary_statistics'][column] = self.weighted_statistics(
results, column
)
return combined
def weighted_statistics(self, results, column):
"""Calculate weighted statistics across chunks."""
import numpy as np
values = []
weights = []
for result in results:
if column in result.get('statistics', {}):
values.append(result['statistics'][column]['mean'])
weights.append(result.get('record_count', 1))
if values:
weighted_mean = np.average(values, weights=weights)
return {
'mean': weighted_mean,
'chunks': len(values),
'total_weight': sum(weights)
}
return {}
async def get_file_size(self, file_path):
"""Get file size in bytes."""
import os
return os.path.getsize(file_path)
async def optimize_memory(self):
"""Optimize memory usage."""
import gc
gc.collect()
print("🧹 Memory optimization completed")
# Usage example
analyzer = PerformantDataAnalyzer()
# Analyze large dataset with performance optimization
result = await analyzer.analyze_large_dataset(
'/sandbox/big_data/sales_history.csv',
{
'analysis': 'descriptive_statistics',
'columns': ['revenue', 'quantity', 'profit_margin'],
'includeCorrelations': True
}
)
print(f"⚡ Analysis completed in {analyzer.performance_metrics['execution_time']:.2f} seconds")
print(f"💾 Memory usage: {analyzer.performance_metrics['memory_usage'] / 1024 / 1024:.2f} MB")Integration Workflows
Complete Data Analysis Pipeline
// End-to-end data analysis workflow
class DataAnalysisPipeline {
constructor() {
this.pipeline_id = Date.now().toString();
this.results = {};
}
async executeFullPipeline(inputFiles, analysisConfig) {
console.log(`🚀 Starting data analysis pipeline: ${this.pipeline_id}`);
try {
// Stage 1: Data ingestion and validation
const ingestionResults = await this.dataIngestion(inputFiles);
// Stage 2: Data quality assessment
const qualityResults = await this.dataQualityAssessment(ingestionResults);
// Stage 3: Data cleaning and transformation
const cleanedData = await this.dataCleaningStage(qualityResults);
// Stage 4: Statistical analysis
const statisticalResults = await this.statisticalAnalysisStage(cleanedData, analysisConfig);
// Stage 5: Advanced analytics
const advancedResults = await this.advancedAnalyticsStage(cleanedData, analysisConfig);
// Stage 6: Results compilation and reporting
const finalReport = await this.generateComprehensiveReport({
ingestion: ingestionResults,
quality: qualityResults,
statistical: statisticalResults,
advanced: advancedResults
});
return finalReport;
} catch (error) {
console.error(`❌ Pipeline failed: ${error.message}`);
throw error;
}
}
async dataIngestion(inputFiles) {
console.log('📥 Stage 1: Data Ingestion');
const results = [];
for (const file of inputFiles) {
if (file.path.endsWith('.xlsx')) {
const excelResult = await xlsxAnalysis({
filePath: file.path,
operation: 'metadata_extraction',
includeAllSheets: true
});
results.push({ ...excelResult, source: file.path });
} else {
const dataResult = await dataTransformation({
inputData: file.path,
operation: 'data_profiling',
profile: {
includeTypes: true,
includeStats: true,
sampleSize: 10000
}
});
results.push({ ...dataResult, source: file.path });
}
}
return results;
}
async dataQualityAssessment(ingestionResults) {
console.log('🔍 Stage 2: Data Quality Assessment');
const qualityReports = [];
for (const result of ingestionResults) {
const qualityReport = await xlsxAnalysis({
filePath: result.source,
operation: 'quality_assessment',
validation: {
checkCompleteness: true,
checkConsistency: true,
checkAccuracy: true,
detectOutliers: true,
validateFormats: true
}
});
qualityReports.push({
source: result.source,
quality: qualityReport
});
}
return qualityReports;
}
async dataCleaningStage(qualityResults) {
console.log('🧹 Stage 3: Data Cleaning and Transformation');
const cleanedFiles = [];
for (const qualityResult of qualityResults) {
const cleaningSteps = this.generateCleaningSteps(qualityResult.quality);
const cleanedData = await dataTransformation({
inputData: qualityResult.source,
operation: 'comprehensive_cleaning',
steps: cleaningSteps,
output: `/sandbox/cleaned/${path.basename(qualityResult.source)}`
});
cleanedFiles.push(cleanedData.outputPath);
}
return cleanedFiles;
}
async statisticalAnalysisStage(cleanedFiles, config) {
console.log('📊 Stage 4: Statistical Analysis');
const statisticalResults = [];
for (const file of cleanedFiles) {
const stats = await statisticalAnalysis({
data: file,
analysis: 'comprehensive_statistics',
include: [
'descriptive_statistics',
'correlation_analysis',
'distribution_fitting',
'hypothesis_testing'
],
options: config.statistical || {}
});
statisticalResults.push({
source: file,
statistics: stats
});
}
return statisticalResults;
}
async advancedAnalyticsStage(cleanedFiles, config) {
console.log('🤖 Stage 5: Advanced Analytics');
const advancedResults = [];
for (const file of cleanedFiles) {
const advanced = await statisticalAnalysis({
data: file,
analysis: 'advanced_analytics',
include: [
'regression_analysis',
'time_series_analysis',
'clustering_analysis',
'anomaly_detection'
],
options: config.advanced || {}
});
advancedResults.push({
source: file,
advanced: advanced
});
}
return advancedResults;
}
async generateComprehensiveReport(allResults) {
console.log('📋 Stage 6: Report Generation');
const report = {
pipeline_id: this.pipeline_id,
execution_date: new Date().toISOString(),
summary: this.generateExecutiveSummary(allResults),
detailed_results: allResults,
recommendations: this.generateRecommendations(allResults),
visualizations: await this.generateVisualizations(allResults)
};
// Save comprehensive report
await writeFile({
path: `/sandbox/reports/analysis_report_${this.pipeline_id}.json`,
content: JSON.stringify(report, null, 2)
});
return report;
}
generateCleaningSteps(qualityReport) {
const steps = [];
if (qualityReport.completeness && qualityReport.completeness.missingPercentage > 0.1) {
steps.push({
type: 'handle_missing',
strategy: 'smart_imputation'
});
}
if (qualityReport.outliers && qualityReport.outliers.count > 0) {
steps.push({
type: 'outlier_treatment',
method: 'iqr',
action: 'cap'
});
}
return steps;
}
generateExecutiveSummary(results) {
return {
files_processed: results.statistical.length,
data_quality_score: this.calculateQualityScore(results.quality),
key_insights: this.extractKeyInsights(results.statistical),
anomalies_detected: this.countAnomalies(results.advanced)
};
}
generateRecommendations(results) {
const recommendations = [];
// Data quality recommendations
for (const quality of results.quality) {
if (quality.quality.completeness?.missingPercentage > 0.2) {
recommendations.push({
type: 'data_quality',
priority: 'high',
message: `High missing data rate detected in ${quality.source}. Consider data collection improvements.`
});
}
}
return recommendations;
}
async generateVisualizations(results) {
// Generate visualization configs that could be used with charting tools
const visualizations = [];
for (const stat of results.statistical) {
if (stat.statistics.correlation_matrix) {
visualizations.push({
type: 'correlation_heatmap',
data: stat.statistics.correlation_matrix,
title: `Correlation Matrix - ${path.basename(stat.source)}`
});
}
}
return visualizations;
}
calculateQualityScore(qualityResults) {
// Simple quality score calculation
let totalScore = 0;
for (const result of qualityResults) {
const completeness = 1 - (result.quality.completeness?.missingPercentage || 0);
const accuracy = 1 - (result.quality.accuracy?.errorRate || 0);
const score = (completeness + accuracy) / 2;
totalScore += score;
}
return totalScore / qualityResults.length;
}
extractKeyInsights(statisticalResults) {
const insights = [];
for (const result of statisticalResults) {
if (result.statistics.correlation_analysis) {
const strongCorrelations = result.statistics.correlation_analysis.strong_correlations || [];
insights.push(...strongCorrelations.map(corr =>
`Strong correlation detected between ${corr.variable1} and ${corr.variable2} (${corr.coefficient})`
));
}
}
return insights;
}
countAnomalies(advancedResults) {
let totalAnomalies = 0;
for (const result of advancedResults) {
if (result.advanced.anomaly_detection) {
totalAnomalies += result.advanced.anomaly_detection.count || 0;
}
}
return totalAnomalies;
}
}
// Execute comprehensive analysis pipeline
const pipeline = new DataAnalysisPipeline();
const inputFiles = [
{ path: '/sandbox/data/sales_data.xlsx' },
{ path: '/sandbox/data/customer_data.csv' },
{ path: '/sandbox/data/product_data.xlsx' }
];
const analysisConfig = {
statistical: {
includeCorrelations: true,
confidenceLevel: 0.95,
hypothesisTests: ['normality', 'independence']
},
advanced: {
regressionType: 'multiple_linear',
clusteringMethod: 'kmeans',
anomalyThreshold: 2.5
}
};
const comprehensiveReport = await pipeline.executeFullPipeline(inputFiles, analysisConfig);
console.log('✅ Comprehensive data analysis completed!');Related Tools
File System Tools
Upload and manage Excel files and datasets for analysis
Code Execution
Execute custom Python and JavaScript code for advanced analytics
Document Generation
Generate analysis reports and documentation from processed data
Web Tools
Collect additional data from web sources to enrich analysis datasets
Next Steps: Start with Excel Analysis for processing spreadsheet data, or explore Statistical Analysis for advanced statistical computations.