logo_smallAxellero.io

Data Analysis Tools

Excel processing, statistical analysis, and data transformation capabilities for comprehensive data analysis workflows within secure sandbox environments.

Data Analysis Tools

Comprehensive data analysis capabilities including Excel processing, statistical analysis, and data transformation tools operating within secure sandbox environments with advanced computation and visualization features.

📊 Advanced Data Analysis Suite

Data analysis tools provide sophisticated Excel processing, statistical computation, and data transformation capabilities with support for large datasets and complex analytical workflows.

Quick Navigation

Available Tools

ToolCodePurposeKey Features
XLSX AnalysisxlsxAnalysisExcel file processing and analysisMulti-sheet support, formula evaluation, pivot tables, charting
Statistical AnalysisstatisticalAnalysisStatistical computations and modelingDescriptive stats, hypothesis testing, regression, time series
Data TransformationdataTransformationData cleaning and transformationETL operations, normalization, aggregation, format conversion

Data Analysis Architecture

Processing Pipeline

Analysis Capabilities

🔬 Comprehensive Analysis Features

  • Excel Processing - Complete Excel file analysis with formula evaluation and chart extraction
  • Statistical Computing - Advanced statistical methods including regression, hypothesis testing, and time series analysis
  • Data Transformation - ETL operations with data cleaning, normalization, and format conversion
  • Large Dataset Support - Efficient processing of datasets up to 1GB with streaming and chunked operations
  • Interactive Analysis - Real-time data exploration with dynamic filtering and aggregation
  • Visualization - Automated chart generation and statistical plot creation

Excel Analysis Capabilities

Multi-Sheet Processing

Data Validation and Quality Assessment

Statistical Analysis Capabilities

Descriptive Statistics

Regression Analysis

Data Transformation Capabilities

ETL Operations

Performance and Scalability

Large Dataset Processing

📈 Performance Optimization

Memory Management:

  • Chunked Processing - Process large datasets in memory-efficient chunks
  • Streaming Operations - Stream data for minimal memory footprint
  • Lazy Evaluation - Defer computations until results are needed
  • Memory Monitoring - Track memory usage and optimize automatically
  • Garbage Collection - Efficient cleanup of intermediate results

Parallel Processing:

  • Multi-threading - Parallel execution of independent operations
  • Vectorized Operations - Use SIMD instructions for numerical computations
  • Distributed Computing - Split large tasks across multiple processes
  • GPU Acceleration - Leverage GPU for compatible operations
  • Caching - Intelligent caching of intermediate results

Performance Monitoring

# Performance-optimized data analysis workflow
class PerformantDataAnalyzer:
    def __init__(self):
        self.chunk_size = 10000
        self.memory_threshold = 2 * 1024 * 1024 * 1024  # 2GB
        self.performance_metrics = {}
    
    async def analyze_large_dataset(self, file_path, analysis_config):
        """Analyze large datasets with performance optimization."""
        
        import time
        import psutil
        
        start_time = time.time()
        initial_memory = psutil.Process().memory_info().rss
        
        try:
            # Check file size to determine processing strategy
            file_size = await self.get_file_size(file_path)
            
            if file_size > self.memory_threshold:
                return await self.chunked_analysis(file_path, analysis_config)
            else:
                return await self.standard_analysis(file_path, analysis_config)
                
        finally:
            # Record performance metrics
            end_time = time.time()
            final_memory = psutil.Process().memory_info().rss
            
            self.performance_metrics = {
                'execution_time': end_time - start_time,
                'memory_usage': final_memory - initial_memory,
                'file_size': file_size,
                'processing_method': 'chunked' if file_size > self.memory_threshold else 'standard'
            }
    
    async def chunked_analysis(self, file_path, config):
        """Process large files in chunks."""
        
        results = []
        chunk_count = 0
        
        async for chunk in self.read_file_chunks(file_path):
            chunk_result = await self.analyze_chunk(chunk, config)
            results.append(chunk_result)
            chunk_count += 1
            
            print(f"📊 Processed chunk {chunk_count} ({len(chunk)} rows)")
            
            # Monitor memory usage
            memory_usage = psutil.Process().memory_info().rss
            if memory_usage > self.memory_threshold * 0.8:
                print("⚠️ High memory usage detected, optimizing...")
                await self.optimize_memory()
        
        # Combine chunk results
        return await self.combine_chunk_results(results, config)
    
    async def standard_analysis(self, file_path, config):
        """Standard analysis for smaller files."""
        
        if file_path.endswith('.xlsx'):
            return await xlsxAnalysis({
                'filePath': file_path,
                **config
            })
        else:
            return await statisticalAnalysis({
                'data': file_path,
                **config
            })
    
    async def read_file_chunks(self, file_path):
        """Generator for reading file in chunks."""
        
        import pandas as pd
        
        if file_path.endswith('.csv'):
            for chunk in pd.read_csv(file_path, chunksize=self.chunk_size):
                yield chunk
        elif file_path.endswith('.xlsx'):
            # For Excel files, read sheet by sheet
            xl_file = pd.ExcelFile(file_path)
            for sheet_name in xl_file.sheet_names:
                chunk = pd.read_excel(file_path, sheet_name=sheet_name)
                yield chunk
    
    async def analyze_chunk(self, chunk, config):
        """Analyze individual chunk."""
        
        # Convert chunk to temporary file for processing
        temp_path = f'/sandbox/temp/chunk_{id(chunk)}.csv'
        chunk.to_csv(temp_path, index=False)
        
        try:
            result = await statisticalAnalysis({
                'data': temp_path,
                **config
            })
            return result
        finally:
            # Clean up temporary file
            import os
            if os.path.exists(temp_path):
                os.remove(temp_path)
    
    async def combine_chunk_results(self, chunk_results, config):
        """Combine results from chunk processing."""
        
        if config.get('analysis') == 'descriptive_statistics':
            return self.combine_statistical_results(chunk_results)
        elif config.get('operation') == 'aggregation':
            return self.combine_aggregation_results(chunk_results)
        else:
            return {'chunk_results': chunk_results}
    
    def combine_statistical_results(self, results):
        """Combine statistical analysis results."""
        
        combined = {
            'total_records': sum(r.get('record_count', 0) for r in results),
            'summary_statistics': {},
            'chunks_processed': len(results)
        }
        
        # Combine statistics (weighted by chunk size)
        for column in results[0].get('columns', []):
            combined['summary_statistics'][column] = self.weighted_statistics(
                results, column
            )
        
        return combined
    
    def weighted_statistics(self, results, column):
        """Calculate weighted statistics across chunks."""
        
        import numpy as np
        
        values = []
        weights = []
        
        for result in results:
            if column in result.get('statistics', {}):
                values.append(result['statistics'][column]['mean'])
                weights.append(result.get('record_count', 1))
        
        if values:
            weighted_mean = np.average(values, weights=weights)
            return {
                'mean': weighted_mean,
                'chunks': len(values),
                'total_weight': sum(weights)
            }
        
        return {}
    
    async def get_file_size(self, file_path):
        """Get file size in bytes."""
        import os
        return os.path.getsize(file_path)
    
    async def optimize_memory(self):
        """Optimize memory usage."""
        import gc
        gc.collect()
        print("🧹 Memory optimization completed")

# Usage example
analyzer = PerformantDataAnalyzer()

# Analyze large dataset with performance optimization
result = await analyzer.analyze_large_dataset(
    '/sandbox/big_data/sales_history.csv',
    {
        'analysis': 'descriptive_statistics',
        'columns': ['revenue', 'quantity', 'profit_margin'],
        'includeCorrelations': True
    }
)

print(f"⚡ Analysis completed in {analyzer.performance_metrics['execution_time']:.2f} seconds")
print(f"💾 Memory usage: {analyzer.performance_metrics['memory_usage'] / 1024 / 1024:.2f} MB")

Integration Workflows

Complete Data Analysis Pipeline

// End-to-end data analysis workflow
class DataAnalysisPipeline {
    constructor() {
        this.pipeline_id = Date.now().toString();
        this.results = {};
    }
    
    async executeFullPipeline(inputFiles, analysisConfig) {
        console.log(`🚀 Starting data analysis pipeline: ${this.pipeline_id}`);
        
        try {
            // Stage 1: Data ingestion and validation
            const ingestionResults = await this.dataIngestion(inputFiles);
            
            // Stage 2: Data quality assessment
            const qualityResults = await this.dataQualityAssessment(ingestionResults);
            
            // Stage 3: Data cleaning and transformation
            const cleanedData = await this.dataCleaningStage(qualityResults);
            
            // Stage 4: Statistical analysis
            const statisticalResults = await this.statisticalAnalysisStage(cleanedData, analysisConfig);
            
            // Stage 5: Advanced analytics
            const advancedResults = await this.advancedAnalyticsStage(cleanedData, analysisConfig);
            
            // Stage 6: Results compilation and reporting
            const finalReport = await this.generateComprehensiveReport({
                ingestion: ingestionResults,
                quality: qualityResults,
                statistical: statisticalResults,
                advanced: advancedResults
            });
            
            return finalReport;
            
        } catch (error) {
            console.error(`❌ Pipeline failed: ${error.message}`);
            throw error;
        }
    }
    
    async dataIngestion(inputFiles) {
        console.log('📥 Stage 1: Data Ingestion');
        
        const results = [];
        
        for (const file of inputFiles) {
            if (file.path.endsWith('.xlsx')) {
                const excelResult = await xlsxAnalysis({
                    filePath: file.path,
                    operation: 'metadata_extraction',
                    includeAllSheets: true
                });
                results.push({ ...excelResult, source: file.path });
            } else {
                const dataResult = await dataTransformation({
                    inputData: file.path,
                    operation: 'data_profiling',
                    profile: {
                        includeTypes: true,
                        includeStats: true,
                        sampleSize: 10000
                    }
                });
                results.push({ ...dataResult, source: file.path });
            }
        }
        
        return results;
    }
    
    async dataQualityAssessment(ingestionResults) {
        console.log('🔍 Stage 2: Data Quality Assessment');
        
        const qualityReports = [];
        
        for (const result of ingestionResults) {
            const qualityReport = await xlsxAnalysis({
                filePath: result.source,
                operation: 'quality_assessment',
                validation: {
                    checkCompleteness: true,
                    checkConsistency: true,
                    checkAccuracy: true,
                    detectOutliers: true,
                    validateFormats: true
                }
            });
            
            qualityReports.push({
                source: result.source,
                quality: qualityReport
            });
        }
        
        return qualityReports;
    }
    
    async dataCleaningStage(qualityResults) {
        console.log('🧹 Stage 3: Data Cleaning and Transformation');
        
        const cleanedFiles = [];
        
        for (const qualityResult of qualityResults) {
            const cleaningSteps = this.generateCleaningSteps(qualityResult.quality);
            
            const cleanedData = await dataTransformation({
                inputData: qualityResult.source,
                operation: 'comprehensive_cleaning',
                steps: cleaningSteps,
                output: `/sandbox/cleaned/${path.basename(qualityResult.source)}`
            });
            
            cleanedFiles.push(cleanedData.outputPath);
        }
        
        return cleanedFiles;
    }
    
    async statisticalAnalysisStage(cleanedFiles, config) {
        console.log('📊 Stage 4: Statistical Analysis');
        
        const statisticalResults = [];
        
        for (const file of cleanedFiles) {
            const stats = await statisticalAnalysis({
                data: file,
                analysis: 'comprehensive_statistics',
                include: [
                    'descriptive_statistics',
                    'correlation_analysis',
                    'distribution_fitting',
                    'hypothesis_testing'
                ],
                options: config.statistical || {}
            });
            
            statisticalResults.push({
                source: file,
                statistics: stats
            });
        }
        
        return statisticalResults;
    }
    
    async advancedAnalyticsStage(cleanedFiles, config) {
        console.log('🤖 Stage 5: Advanced Analytics');
        
        const advancedResults = [];
        
        for (const file of cleanedFiles) {
            const advanced = await statisticalAnalysis({
                data: file,
                analysis: 'advanced_analytics',
                include: [
                    'regression_analysis',
                    'time_series_analysis',
                    'clustering_analysis',
                    'anomaly_detection'
                ],
                options: config.advanced || {}
            });
            
            advancedResults.push({
                source: file,
                advanced: advanced
            });
        }
        
        return advancedResults;
    }
    
    async generateComprehensiveReport(allResults) {
        console.log('📋 Stage 6: Report Generation');
        
        const report = {
            pipeline_id: this.pipeline_id,
            execution_date: new Date().toISOString(),
            summary: this.generateExecutiveSummary(allResults),
            detailed_results: allResults,
            recommendations: this.generateRecommendations(allResults),
            visualizations: await this.generateVisualizations(allResults)
        };
        
        // Save comprehensive report
        await writeFile({
            path: `/sandbox/reports/analysis_report_${this.pipeline_id}.json`,
            content: JSON.stringify(report, null, 2)
        });
        
        return report;
    }
    
    generateCleaningSteps(qualityReport) {
        const steps = [];
        
        if (qualityReport.completeness && qualityReport.completeness.missingPercentage > 0.1) {
            steps.push({
                type: 'handle_missing',
                strategy: 'smart_imputation'
            });
        }
        
        if (qualityReport.outliers && qualityReport.outliers.count > 0) {
            steps.push({
                type: 'outlier_treatment',
                method: 'iqr',
                action: 'cap'
            });
        }
        
        return steps;
    }
    
    generateExecutiveSummary(results) {
        return {
            files_processed: results.statistical.length,
            data_quality_score: this.calculateQualityScore(results.quality),
            key_insights: this.extractKeyInsights(results.statistical),
            anomalies_detected: this.countAnomalies(results.advanced)
        };
    }
    
    generateRecommendations(results) {
        const recommendations = [];
        
        // Data quality recommendations
        for (const quality of results.quality) {
            if (quality.quality.completeness?.missingPercentage > 0.2) {
                recommendations.push({
                    type: 'data_quality',
                    priority: 'high',
                    message: `High missing data rate detected in ${quality.source}. Consider data collection improvements.`
                });
            }
        }
        
        return recommendations;
    }
    
    async generateVisualizations(results) {
        // Generate visualization configs that could be used with charting tools
        const visualizations = [];
        
        for (const stat of results.statistical) {
            if (stat.statistics.correlation_matrix) {
                visualizations.push({
                    type: 'correlation_heatmap',
                    data: stat.statistics.correlation_matrix,
                    title: `Correlation Matrix - ${path.basename(stat.source)}`
                });
            }
        }
        
        return visualizations;
    }
    
    calculateQualityScore(qualityResults) {
        // Simple quality score calculation
        let totalScore = 0;
        
        for (const result of qualityResults) {
            const completeness = 1 - (result.quality.completeness?.missingPercentage || 0);
            const accuracy = 1 - (result.quality.accuracy?.errorRate || 0);
            const score = (completeness + accuracy) / 2;
            totalScore += score;
        }
        
        return totalScore / qualityResults.length;
    }
    
    extractKeyInsights(statisticalResults) {
        const insights = [];
        
        for (const result of statisticalResults) {
            if (result.statistics.correlation_analysis) {
                const strongCorrelations = result.statistics.correlation_analysis.strong_correlations || [];
                insights.push(...strongCorrelations.map(corr => 
                    `Strong correlation detected between ${corr.variable1} and ${corr.variable2} (${corr.coefficient})`
                ));
            }
        }
        
        return insights;
    }
    
    countAnomalies(advancedResults) {
        let totalAnomalies = 0;
        
        for (const result of advancedResults) {
            if (result.advanced.anomaly_detection) {
                totalAnomalies += result.advanced.anomaly_detection.count || 0;
            }
        }
        
        return totalAnomalies;
    }
}

// Execute comprehensive analysis pipeline
const pipeline = new DataAnalysisPipeline();
const inputFiles = [
    { path: '/sandbox/data/sales_data.xlsx' },
    { path: '/sandbox/data/customer_data.csv' },
    { path: '/sandbox/data/product_data.xlsx' }
];

const analysisConfig = {
    statistical: {
        includeCorrelations: true,
        confidenceLevel: 0.95,
        hypothesisTests: ['normality', 'independence']
    },
    advanced: {
        regressionType: 'multiple_linear',
        clusteringMethod: 'kmeans',
        anomalyThreshold: 2.5
    }
};

const comprehensiveReport = await pipeline.executeFullPipeline(inputFiles, analysisConfig);
console.log('✅ Comprehensive data analysis completed!');

Next Steps: Start with Excel Analysis for processing spreadsheet data, or explore Statistical Analysis for advanced statistical computations.